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Power for Genetic Association Studies with Random Allele Frequencies
and Genotype Distributions
Walter T. Ambrosius, Ethan M. Lange, and Carl D. Langefeld
Section on Biostatistics, Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC

One of the first and most important steps in planning a genetic association study is the accurate estimation of the
statistical power under a proposed study design and sample size. In association studies for candidate genes or in
fine-mapping applications, allele and genotype frequencies are often assumed to be known when, in fact, they are
unknown (i.e., random variables from some distribution). For example, if we consider a diallelic marker with allele
frequencies of 0.5 and 0.5 and Hardy-Weinberg proportions, the three genotype frequencies are often assumed to
be 0.25, 0.50, and 0.25, and the statistical power is calculated. Unfortunately, ignoring this source of variation
can inflate the estimated power of the study. In the present article, we propose averaging the estimates of power
over the distribution of the genotype frequencies to calculate the true estimate of power for a fixed allele frequency.
For the usual situation, in which allele frequencies in a population are not known, we propose placing a prior
distribution on the allele frequency, taking advantage of any available genotype information. This Bayesian approach
provides a more accurate estimate of power. We present examples for quantitative and qualitative traits in cohort
studies of unrelated individuals and results from an extensive series of examples that show that ignoring the
uncertainty in allele frequencies can inflate the estimated power of the study. We also present the results from case-
control studies and show that standard methods may also overestimate power. As discussed in this article, the
approach of fixing allele frequencies even if they are not known is the common approach to power calculations.
We show that ignoring the sources of variation in allele frequencies tends to result in overestimates of power and,
consequently, in studies that are underpowered. Software in C is available at http://www.ambrosius.net/Power/.

Introduction

In a genetic association study, the goal is to test for an
association between one or more genetic variants and a
phenotype of interest and to estimate the magnitude of
the association. In these studies, tests are routinely con-
ducted on functional polymorphisms, positionally se-
lected polymorphisms, or haplotypes. SNPs are increas-
ingly forming the backbone of these studies. Two
different approaches are frequently used to identify the
SNP characteristics assumed in the power analysis. In
the first approach, a relatively small number of individ-
uals (e.g., 10–20) is genotyped to verify previously iden-
tified SNPs and to obtain crude estimates of the allele
frequencies. The SNPs that have some minimum allele
frequency (e.g., 0.10) are then genotyped in the sample
of interest, and a test for association is performed. In
the second approach, one that is frequently employed in
candidate-gene studies, polymorphisms are identified

Received September 2, 2003; accepted for publication January 26,
2004; electronically published March XX, 2004.

Address for correspondence and reprints: Dr. Walter Ambrosius,
Department of Public Health Sciences, Medical Center Boulevard,
Winston-Salem, NC 27157. E-mail: wambrosi@wfubmc.edu

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7404-00XX$15.00

through a literature search or public databases, and allele
frequency estimates from these published studies are
then used to compute power. A critical assumption in
these calculations is that the estimated allele frequencies
from the small sample or other populations exactly equal
the underlying allele frequencies in the population being
considered. In general, the validity of this assumption is
not explored and is seriously suspect because (1) there
is important allele frequency heterogeneity across dif-
ferent populations, even within the same ethnic group,
and (2) the estimates are merely estimates and are ran-
dom variables from some often unknown distribution.
For subsequent genotype-based analyses, power calcu-
lations often make the additional assumption that the
genotype frequencies can be estimated from the assumed
allele frequencies under the assumption of Hardy-Wein-
berg proportions. It is clear that, if genotype frequencies
are known a priori, calculation of power can be per-
formed using standard statistical methods and software
(e.g., Elashoff 2000). We hold that allele and genotype
frequencies are rarely known a priori when designing a
study. An important, classic example of when genotype
frequencies are known is when one wishes to calculate
the ad hoc power to detect meaningful differences when
the primary results are negative (see, e.g., Ghosh et al.
2000).
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Table 1

Example from the “Example” Subsection of the “Methods”
Section

n ap (n)

Wexpected WBayesiann � nAA AB nBB QT FE AS

0 8 0 0 0 .0039 .0220
1 7 .3507 0 .6729 .0312 .0725
2 6 .5373 .8508 .8835 .1094 .1364
3 5 .6295 .8508 .9412 .2187 .1874
4 4 .6569 .8508 .9535 .2734 .2035
5 3 .6295 .8508 .9412 .2187 .1779
6 2 .5373 .8508 .8835 .1094 .1223
7 1 .3507 0 .6729 .0312 .0610
8 0 0 0 0 .0039 .0171

a QT p quantitative trait; FE p Fisher’s exact test; AS p arcsine
approximation.

Power analysis methods have been well developed for
continuous and binary phenotypes when the sample
sizes in the two or more groups are fixed (i.e., when
frequencies are known) (Searle 1971; Fleiss 1981; Sahai
and Khurshid 1996). However, we were unable to find
any previous work that deals with the problem of cal-
culating power when the group sizes are not fixed but
when they follow an assumed probability mass func-
tion. Lalouel and Rohrwasser (2002) provide a nice
review of power analysis for case-control studies of ge-
netic association. For family-based tests of association,
there is considerable literature on the calculation of
power. For example, power for the family of transmis-
sion/disequilibrium tests (TDT) (Spielman et al. 1993)
has been examined extensively (Long and Langley 1999;
Wang and Sun 2000; Deng and Chen 2001; Lange and
Laird 2002; McGinnis et al. 2002; Shih and Whittemore
2002).

The idea of integrating over distributions of unknown
parameters (i.e., allele frequency uncertainty in a sam-
ple) to estimate the power of genetic association studies
was discussed by Schork (2002). In his article, Schork
(2002) mentions that a beta prior might be used for
allele frequencies and proposes using empirical esti-
mation of the allele probability density function. Schork
(2002) focuses on a case-control design and states that
it would be of “great value” to explore other study
designs and methods for quantitative traits.

In this article, we describe an approach and computer
software (software in C is available at the authors’ Web
site) that computes power for candidate polymorphisms
while accounting for allele frequency uncertainty under
a cohort design for both qualitative and quantitative
traits, as well as under a case-control design. In the case
in which we know a priori the population allele or ge-
notype frequencies, we propose to model the sample
counts under a multinomial distribution and average
the statistical power over this distribution. In the pre-
dominant situation, in which we do not know the pop-

ulation allele or genotype frequencies, we use Bayesian
methods to expand upon the above approach by placing
a beta prior distribution on the allele or genotype fre-
quencies. We explore the effects of ignoring these two
sources of variation via a series of examples and illus-
trate the methods with both quantitative and qualitative
traits in cohort studies and case-control studies of un-
related individuals. The effect of ignoring these sources
of variation can range from small to substantial, and it
is important to calculate the magnitude of the effect
when planning a candidate polymorphism association
study.

Methods

We will begin by examining methods for cohort studies.
Once we have developed these methods, we can modify
them slightly for use in case-control studies.

Notation

We assume that we have a diallelic marker with alleles
A and B, with genotypes in Hardy-Weinberg propor-
tions, and that the population frequency of allele A is

. We assume that we have a total sample of size NpA

individuals, where is the number of AA, is then n1 2

number of AB, and is the number of BB individuals,n3

such that . In designing most geneticn � n � n p N1 2 3

association studies, we specify N and not the vector
.n p (n ,n ,n )1 2 3

If we know n, the significance level of the test (a), the
statistical test (T), the model (M), and the assumed al-
ternative hypothesis (A), then we can calculate the sta-
tistical power through use of standard methods, which
are described in the next subsection and in the appendix.
Denote this power as . For brevity of no-p (nFa,T,M,A)
tation, we assume that a, T, M, and A are fixed, and
we will denote power for a specific simply as .n p (n)

Standard Methods

If the subjects’ genotypes are known a priori, calcu-
lation of power can be performed using existing methods
and software. For quantitative traits, the general linear
model is used for most comparisons; for qualitative
traits, Fisher’s exact test or the x2 test are frequently
used. Details of these methods are included in the ap-
pendix. Searle (1971) provides a discussion of meth-
odology and power for the general linear model. Tests
of proportions (Fisher’s exact and x2 tests) are discussed
by Sahai and Khurshid (1996) and Fleiss (1981). With
a fixed sample size and a fixed alternative hypothesis,
software readily exists to calculate power (e.g., Elashoff
2000). Unfortunately, subjects’ genotypes are rarely
known a priori when designing a study. In a typical
study, we recruit N subjects, collect genotypic and phe-
notypic data on them, and perform the analysis. In this
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Figure 1 Example of the beta prior. Within each figure, the three
lines are for , 50, and 100, with g and d chosen so that theg � d p 25
means are 0.05 (A), 0.1 (B), 0.2 (C), and 0.5 (D). The curves become
more concentrated (i.e., they have higher peaks) as increases. Ing � d

these examples, the distributions represented are for the less common
alleles.

case, the observed genotype frequencies are random
variables.

Example

Let us first consider a simple example. Assume a dom-
inant–mode-of-inheritance model in which genotypes
AA and AB predispose individuals to one phenotype and
genotype BB predisposes individuals to a different phe-
notype. Further assume that we are designing a study
with eight subjects and could have anywhere from zero
to eight AAs and ABs. If we have zero or eight, then
there would be no power to detect a difference, because
there would be no people in one of the two groups. As
the number of AAs and ABs increases from zero to eight,
the power will rise and then fall again. An example can
be seen in table 1. In this example, we calculate power
for a dominant effect when and . ForN p 8 a p 0.05
the quantitative trait, we assume that ,m p m p 1AA AB

, and that the within-group SD is 1, wherem p 3 (j)BB

is the mean of the AA individuals. For the qualitativemAA

traits, we assume that the penetrances are PEN(AA or
andAB) p Pr (TraitFAA or AB) p 0.98 PEN(BB) p

. The columns headed by in-Pr (TraitFBB) p 0.02 p (n)
dicate the power to detect effects of these magnitudes if
we observe the number of people indicated in the first
two columns for quantitative and qualitative traits using
the Fisher’s exact and arcsine methods. (For details, see
the “Implementation Details” subsection and the ap-
pendix.) The example is artificial, because the differences

are larger than would be expected in practice, but it
serves to illustrate the point. Depending on the observed
genotype distribution, the actual power can range con-
siderably, as seen in the third through fifth columns. The
last two columns of table 1 will be discussed in the
“Motivational Example” subsection.

Multinomial Distribution

The above example illustrates the effect that the ob-
served genotype frequencies have on power. Assume that

is a known fixed quantity and that the alleles are inpA

Hardy-Weinberg proportions. The observed genotype
frequencies then follow a multinomial distribution,

N! 2n n 2n1 2 3( ) ( ) ( )n ∼ f nFp p p 2p 1 � p 1 � p ,[ ]A A A A An !n !n !1 2 3

with expected counts 2E[n] p [Np ,2Np (1 � p ),A A A

. Assume for a moment that . We2N(1 � p ) ] p p 0.5A A

would then expect that 25% of our sample would be
AA, 50% would be AB, and 25% would be BB, but
there will be variability in these proportions. For ex-
ample, if there were a total of 4 subjects, we would
observe 1 AA, 2 ABs, and 1 BB with probability

1 2 14! 1 1 1 3
p .( ) ( ) ( )1!2!1! 4 2 4 32

Similarly, if there were a total of 100 subjects, we would
observe 25 AAs, 50 ABs, and 25 BBs with probability
0.0089.

For each realization of n, we can calculate power.
Averaging across all possible realizations of n results in
the expected power for a fixed aspA

N!
( ) ( )E p n Fp p p n #[ ] �n A n !n !n !n �n �n pN,n �0Gi1 2 3 i 1 2 3

n 2n �n n �2n2 1 2 2 32 p (1 � p ) . (1)A A

Beta Prior

In most problems, we do not know but either usepA

an estimate of it from previous data or apply a plausible
value. In this article, we will assume that the distribution
of can be described, using a beta prior with parameterspA

g and d, as

G(g � d)
g�1 d�1p ∼ g(p Fg,d) p p (1 � p ) (2)A A A A

G(g)G(d)

for and . The mean of this distribution isg � 1 d � 1
, and the variance is . By2g/(g � d) gd/ [(g � d) (g � d � 1)]

varying g and d, the mean can range between 0 and 1.
The variance can be changed by scaling g and d by any
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positive constant, so long as . Examples ofmin (g,d) � 1
beta prior distributions are given in figure 1. We use a
beta prior because it is constrained to , is quite[0,1]
flexible, and allows us to average over the prior distri-
bution in closed form.

The question of how the choice of g and d affects
power is an important one. To answer this question, let

denote the power for a total sample of size N,p (N)
taking into account the variability in genotype frequen-
cies given and the uncertainty in . The functionp pA A

can be thought of as the average . Usingp (N) p (n)
properties of conditional expectations, we can write

, where the innerp (N) p E[p (n)] p E {E [p (n) Fp ]}p n AA

expectation is taken with respect to the distribution of
conditional on , and the outer expectation is takenn pA

with respect to the distribution of . Note that the orderpA

of summation and integration can be exchanged, which
allows the problem to be greatly simplified. After making
the switch, we can collect the powers of andp (1 �A

as , which equals1 2n �n �g�1 n �2n �d�11 2 2 3p ) p (1 � p ) dp∫0A A A A

( ) ( )G 2n � n � g G n � 2n � d1 2 2 3

( )G 2N � g � d

(equation 6.2.1 of Abramowitz and Stegun [1965]). The
result is

G(g�d) N! n2( ) ( )p N p p n 2 #� {G(g)G(d) n !n !n !n �n �n pN,n �0Gi1 2 3 i 1 2 3

( ) ( )G 2n � n � g G n � 2n � d1 2 2 3

,}( )G 2N � g � d

(3)

which is only slightly more difficult to evaluate than
equation (1).

The question is, then: “What beta prior distribution
do we assume for ?” In the absence of previous data,pA

we could assume that all values of are equally likelypA

(i.e., a uniform prior). We could improve upon the uni-
form prior by genotyping a number of subjects to get
an estimate of the allele frequency; if we use an elemen-
tary result in Bayesian statistics, and if we observe xA

copies of the A allele in m individuals ( alleles), then2m
the posterior distribution of is (if we assume a uniformpA

prior) . This wouldp Fx ,m ∼ beta (1 � x ,1 � 2m � x )A A A A

be a reasonable prior distribution to use for the calcu-
lation of power. Alternatively, one could use nonstatist-
ical arguments to justify the use of an empirical distri-
bution from another population for the same SNP or
from the same population for a different SNP. In any
case, plots of equation (2) can be used to help decide

on a reasonable prior distribution. Under the assumption
of random mating within one population, it is reason-
able to assume that the distribution of would be un-pA

imodal, which cannot be assumed in the situation dis-
cussed by Schork (2002). If the distribution is unimodal
and restricted to the interval between 0 and 1, the family
of beta distributions provides a rich set of possible
distributions.

Implementation Details

We have implemented this approach in the C pro-
gramming language and Proc-StatXact (Mehta and Patel
1999). We used utilities, a sorting algorithm, and the
log-gamma function from Numerical Recipes (Press et
al. 1992). We used DCDFLIB (Double precision Cu-
mulative Distribution Function LIBrary) to calculate
probabilities of the normal, x2, and F distributions
(Brown et al. 1997; software available from the De-
partment of Biomathematics and Biostatistics Free Code
Archive Web site). Our program is freely available at
the authors’ Web site. Some of the algorithms for cal-
culating the multinomial probabilities are based on al-
gorithms by Chasalow (2002) (software available from
the Comprehensive R Archive Network Web site). Both
equations (1) and (3) use for all possible . Notep (n) n
that the amount of computation time goes up as the
square of N (run time is O[ ]) because there are2N

possible values of .(N � 2)(N � 1)/2 n
For quantitative traits, we have assumed use of the

general linear model for hypothesis testing. Power for a
fixed alternative hypothesis is calculated exactly for any
sample size through use of methods described in detail
in the appendix. For qualitative traits, we calculated
power using Fisher’s exact test and the x2 test. Fisher’s
exact test is somewhat conservative for small sample
sizes but does not rely on large sample approximations
(Agresti 1990, pp. 65–66). In contrast, a x2 test is less
conservative but does require approximations based on
the normal approximation to the binomial distribution.
The calculations required to calculate for Fisher’sp (n)
exact test are quite complicated and difficult to program.
Thus, we initially used Proc-StatXact to calculate p (n)
and read those values into our C program to calculate

and , using equations (1) and (3). WeE [p (n) Fp ] p (N)n A

subsequently programmed Fisher’s exact test to create
an entirely stand-alone program. In the examples shown
in table 3, the differences between using Proc-StatXact’s
implementation of Fisher’s exact test and ours never re-
sulted in overall power differences 10.0003. Our pro-
gram will either calculate power using our implemen-
tation of Fisher’s exact test or will read in power
calculated externally (perhaps using Proc-StatXact).

If was not integer valued, we calculated theE [n]
power at the bracketing values and took the minimum
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as the power for Fisher’s exact test. That is, if the ex-
pected group sizes were , we calculated power(5.5,14.5)
at and and took the minimum power, as(5,15) (6,14)
would be done in practice, to be conservative. We im-
plemented power estimation for the x2 test using the
arcsine approximation with formulas from Sahai and
Khurshid (1996) (see the appendix). This approximation
gives sample sizes that are too low and power that is
too high (Sahai and Khurshid 1996) but has the advan-
tage that it can be calculated for all . Although theren
are formulas based on a corrected x2 test that are too
conservative (Sahai and Khurshid 1996), they all fail at
the edges of the range of possible . Because of this, wen
have chosen to simply use the arcsine approximation for
our examples. This approximation may not be very good
at the edges of the range of , but, with moderately largen
values of N and chosen so that p is unlikely to be(g,d)
near 0 or 1, the weight given for extreme valuesp (n)
of is small. We have also implemented a general powern
calculation procedure for tables (Lachin 1977) tor # c
allow for genotype-based analyses. This method(2 # 3)
can also be used for dominance models.

Case-Control Studies

For the case-control studies, we assume a fixed sample
of controls and cases; we denote the number ofN N0 1

controls with genotype AA as , the number with ABn01

as , and the number with BB as . We similarlyn n02 03

define for cases. We assume that the allele frequenciesn1j

differ between the controls and the cases, and we denote
these as and , respectively. We definep p n pA0 A1

and test whether the allele fre-(n ,n ,n ,n ,n ,n )01 02 03 11 12 13

quencies are different between cases and controls. For
the moment, we will combine individuals with genotypes
AA and AB, to determine whether the proportion of
individuals with at least one copy of A differs between
cases and controls.

Let denote the power for detecting a dif-p (p ,p )A0 A1

ference between the cases and the controls in the pro-
portion who are AA or AB when we assume that pA0

and are known. In the context of case-control studies,pA1

plays the same role as does in cohortp (p ,p ) p(E[n])A0 A1

studies. For reasons that we will explain shortly, this
additional notation is necessary to differentiate between
case-control and cohort studies. Testing for a difference
between cases and controls is simply a test of the equality
of two proportions with group sizes and andN N0 1

proportions under the alternative hypothesis of 2p �A0

and (again, under an22p (1 � p ) p � 2p (1 � p )A0 A0 A1 A1 A1

assumption of Hardy-Weinberg proportions). We used
the arcsine approximation to the x2, Lachin’s method
(Lachin 1977), or Fisher’s exact test to calculate the
power of this comparison (see the appendix for details).

This is the typical approach to calculating power for
case-control studies.

As was done in equation (1), we average over the
multinomial distributions to calculate the average power
for fixed and asp pA0 A1

( )E p n Fp ,p p[ ]n A0 A1

( )p n #� � {n �n �n pN ,n �0Gi n �n �n pN ,n �0Gi01 02 03 0 0i 11 12 13 1 1i

N !0 n 2n �n n �2n02 01 02 02 032 p (1 � p ) #A0 A0n !n !n !01 02 03

N !1 n 2n �n n �2n12 11 12 12 132 p (1 � p ) .A1 A1 }n !n !n !11 12 13

(4)

This is obviously considerably more complicated to eval-
uate because of the double summation required by the
two multinomial distributions. Similarly, we can modify
equation (3) to calculate the average power over two
prior distributions. We assume that andp ∼ beta(g ,d )A0 0 0

. This results inp ∼ beta(g ,d )A1 1 1

G(g � d )G(g � d )0 0 1 1( )p N ,N p #0 1
G(g )G(d ) G(g )G(d )0 0 1 1

( )p n #� � {n �n �n pN ,n �0Gi n �n �n pN ,n �0Gi01 02 03 0 0i 11 12 13 1 1i

( ) ( )G 2n � n � g G n � 2n � d01 02 0 02 03 0N !0 n022 #
( )n !n !n ! G 2N � g � d01 02 03 0 0 0

( ) ( )G 2n � n � g G n � 2n � d11 12 1 12 13 1N !1 n122 .}( )n !n !n ! G 2N � g � d11 12 13 1 1 1

(5)

The execution time for equations (4) and (5) is
, because there are2 2O(N N ) (N � 2)(N � 1)(N �0 1 0 0 1

possible values of .2)(N � 1)/4 n1

Finally, we have to calculate . Unlike in the co-p (n)
hort-study examples described above, the data are com-
pletely determined by . We can simply perform the testn
at the a level, and then if it is significant andp (n) p 1

otherwise. This simplifies the calculations be-p (n) p 0
cause we can calculate the sums only over such thatn

. Likewise, in a case-control study, isp (n) p 1 E [n]
fixed, and therefore is either 0 or 1. The no-p (E [n])
tation was introduced to allow us to differ-p (p ,p )A0 A1

entiate between the usual power calculation for co-
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Table 2

Comparison of Power Calculations for a Dominance Model for a
Quantitative Trait

PARAMETERS

E [n] p (E [n]) E [p (n)Fp ]n A p (N)N g d pA

20 1 1 .5 (5,10,5) .7358 .6952 .4937
20 10 10 .5 (5,10,5) .7358 .6952 .6650
20 1,000 1,000 .5 (5,10,5) .7358 .6952 .6949
40 1 1 .5 (10,20,10) .9651 .9488 .6934
40 10 10 .5 (10,20,10) .9651 .9488 .9102
40 1,000 1,000 .5 (10,20,10) .9651 .9488 .9484

NOTE.—The AA and AB groups are compared with the BB group.
Parameters include , , and .2m p (3,3,1) j p 2 a p 0.05

Table 3

Comparison of Power Calculations for Qualitative Traits, using
Fisher’s Exact Test and a Dominance Model

PARAMETERS

E [n] p (E [n]) E [p (n)Fp ]n A p (N)N g d pA

100 1 1 .5 (25,50,25) .8973 .8841 .6046
100 5 5 .5 (25,50,25) .8973 .8841 .7887
100 10 10 .5 (25,50,25) .8973 .8841 .8310
100 5 45 .1 (1,18,81) .8612 .8483 .8043
100 10 90 .1 (1,18,81) .8612 .8483 .8263
100 100 900 .1 (1,18,81) .8612 .8483 .8462

NOTE.—The AA and AB groups are compared with the BB group.
Parameters include , , andPEN(AA or AB) p 0.5 PEN(BB) p 0.15

.a p 0.05

hort studies, , and for case-control studies,p (E [n])
.p (p ,p )A0 A1

It is interesting to note that, for Fisher’s exact test
and case-control studies, .p (p ,p ) p E [p (n) Fp ,p ]A0 A1 n A0 A1

This is because power for Fisher’s exact test is calculated
as a weighted average over all possible tables with fixed
sizes of and in exactly the same manner as weN N0 1

have proposed here (Mehta and Patel 1999).
This section has focused on a dominant model. We

have also implemented a genotype-based anal-(2 # 3)
ysis in which AA, AB, and BB are compared using a 2-
df test and an allele-based analysis in which each allele
is treated independently.

Results

Quantitative Traits for Cohort Studies

A comparison of power for a dominant 1-df alter-
native hypothesis for a quantitative trait is shown in
table 2. The column with the header “ ” lists theE [n]
expected number of counts in the three cells. The column
under “ ” shows the power if we knew a priorip (E [n])
that the observed were . The last two columnsn E [n]
list the power when accounting for variability in whenn

is fixed and variable Severalp (E [p (n) Fp ]) (p (N)).A n A

points should be noted. First, and areE [p (n) Fp ] p (N)n A

generally smaller than . When the prior for isp(E[n]) pA

diffuse (small g and d), there is a larger difference than
with a concentrated prior. Second, as g and d are in-
creased while their ratio is held fixed, approachesp (N)

, which is the usual situation when priorE [p (n) Fp ]n A

uncertainty is reduced (i.e., when you are assuming more
information). If we use a genotype-based 2-df genetic
model instead of a quantitative dominant model, the
results are similar.

Qualitative Traits for Cohort Studies

Power for qualitative traits when Fisher’s exact test
is used can be seen in table 3. In all examples, a dom-
inant mode of inheritance is assumed for the trait. In

general, and , butp (N) ! E [p (n) Fp ] p (N) ! p(E[n])n A

was not always ! The pattern is forE [p (n) Fp ] p(E[n]).n A

the power to be overestimated when ignoring the sam-
pling variability in and the uncertainty in . Resultsn pA

using the arcsine approximation for tables and2 # 2
genotype-based analyses in which we allow three(2 # 3)
levels were similar but are not shown.

Case-Control Studies

Power for case-control studies using the arcsine ap-
proximation can be seen in table 4, in which a dominant
model is assumed. In general, the pattern p (N ,N ) !0 1

is the same as that seen forE [p (n) Fp ,p ] ! p (p ,p )n A0 A1 A0 A1

cohort studies. Similar results (not shown) were observed
for a genotype-based model and for an allele-(2 # 3)
based model in which each allele is treated(2 # 2)
independently.

Examples

Motivational Example

We now return to the example described in the
“Methods” section and table 1. The effect sizes were
described previously. We assume the prior on topA

be , which implies�beta (5,5 2 � 5) Pr (AA or AB) p
. The final two columns in table 1 arePr (BB) p 0.5

the weights given to the in equations (1) andp (n)
(3). For the quantitative trait, ,p (E [n]) p 0.6569

, and . For the qual-E [p(n)Fp ] p 0.5945 p(8) p 0.5494n A

itative trait the patterns were similar: p (E [n]) p
, , and when0.8508 E [p(n)Fp ] p 0.7909 p(8) p 0.7040n A

Fisher’s exact test was used, and ,p (E [n]) p 0.9535
, and when the arc-E [p(n)Fp ] p 0.9078 p(8) p 0.8562n A

sine approximation was used. In all cases, incorporating
sampling variability of and uncertainty in the speci-n
fication of results in substantially smaller estimates ofpA

power.
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Table 4

Comparison of Power Calculations for Case-Control Studies, using a Dominance Model

PARAMETERS

p(p ,p )A0 A1 E [p(n)Fp ,p ]n A0 A1 p (N ,N )0 1N0 N1 g0 d0 pA0 g1 d1 pA1 OR

100 100 2 3 .4 3 2 .6 2.95 .9067 .9056 .7646
100 100 20 30 .4 30 20 .6 2.95 .9067 .9056 .7628
100 100 200 300 .4 300 200 .6 2.95 .9067 .9056 .8794
300 200 22 28 .44 28 22 .56 1.90 .8601 .8561 .6883
300 200 220 280 .44 280 220 .56 1.90 .8601 .8561 .7972
300 200 2,200 2,800 .44 2,800 2,200 .56 1.90 .8601 .8561 .8487
500 500 23 27 .46 27 23 .54 1.53 .8323 .8319 .7002
500 500 230 270 .46 270 230 .54 1.53 .8323 .8319 .7367
500 500 2,300 2,700 .46 2,700 2,300 .54 1.53 .8323 .8319 .8169

NOTE.—The AA and AB groups are compared with the BB group. The arcsine approximation to the normal
distribution was used for the calculation of , and a x2 test was used for the calculation ofp (p ,p )A0 A1

and . The significance level is for all examples.E [p (n)Fp ,p ] p (N ,N ) a p 0.05n A0 A1 0 1

Example 2

The methods described in this article can be illustrated
using an examination of SNPs in the gene encoding for
the epithelial sodium channel (ENaC) of the kidney (Am-
brosius et al. 1999). The study was approved by the
institutional review board at Indiana University. Al-
though multiple SNPs were examined in the hyperten-
sion study, we focus on one: an ArT substitution at
amino acid 663 of the a subunit (aA663T). This study
consists of a cohort of children in whom various markers
of ENaC activity are measured and a case-control study
of adults whom we examined for a relationship between
hypertension (the case-control variable) and the SNPs.
We report here only data from African Americans.

Allele frequencies for power calculations for cohort
studies were estimated using data from the cohort of
children. We observed 179 AA, 53 AT, and 3 TT indi-
viduals for a663. When an exact test was used (Louis
and Dempster 1987), there was no evidence that the
assumption of Hardy-Weinberg was inappropriate

. On the basis of this, we assumed a(P p 1.0)
prior for a663A. (The prior parametersbeta(413,61)

were calculated using the method described in the “Beta
Prior” subsection of the “Methods” section: 413 p

and .) A plot of1 � 2 # 179 � 53 61 p 1 � 53 � 2 # 3
the prior shows that most of the mass is near 1, indi-
cating that the wild-type allele is highly prevalent. We
illustrate the proposed methods by examining power for
a quantitative trait (log of the aldosterone:potassium
ratio [nmol/mmol] in urine) in children and a qualitative
trait (hypertension) in adults.

Specifically, three estimates of the sample size required
for 80% power are illustrated: (1) one ignoring both the
sampling variation about and the uncertainty inpA

; (2) one accounting for the sampling vari-p {p (E [n])}A

ation about but ignoring the uncertainty in ,p pA A

; and (3) one accounting for both the sam-E [p (n) Fp ]n A

pling variation about and the uncertainty in ,p pA A

.p (N)
For the calculation of power for the case-control

study, we note that there are 75 normotensive individ-
uals (controls) with AA, 37 with AT, and 10 with TT
genotypes for a663. There were 229 hypertensive in-
dividuals (cases) with AA, 78 with AT, and 9 with TT.
There was no evidence that the assumption of Hardy-
Weinberg equilibrium was inappropriate in hypertensive

or normotensive individuals(P p 0.51) (P p 0.12)
(Louis and Dempster 1987). The genotype frequencies
correspond to prior distributions for the distribution of
A of for normotensive andbeta(188,58) beta(537,97)
for hypertensive individuals. Because calculation of
power for case-control studies is much more computa-
tionally intensive than for cohort studies, we report only
the power estimates for and ratherN p 122 N p 3160 1

than calculating the required sample sizes for a given
power.

Quantitative trait for cohort studies.—In the original
study, the outcome measurements (log of the aldos-
terone:potassium ratio [nmol/mmol] in urine) were
made multiple times, and a repeated measures analysis
of covariance model with a random effect for subject
was used. Here, we assume one measurement will be
made for each subject, and we will not adjust for co-
variates. The pooled SD was 0.97, with means of �1.45
(AA), �1.25 (AT), and �0.18 (TT). We calculated
power to detect an effect of this magnitude through use
of a 2-df null hypothesis at the 5% level, using the

prior described above. Using a simplebeta(413,61)
power calculation, we would need 293 subjects to have
80% power . Incorporating the variability of(p(E[n]))
the multinomial distribution would result in 323 subjects
being required . Finally, incorpo-(E [p (n) Fp ] p 0.8)n A
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rating the uncertainty in specification of the allele fre-
quency would result in a sample size of 330 subjects

. As can clearly be seen, the sample size(p [N] p 0.8)
would be substantially underestimated if we did not ac-
count for the variability in allele frequency and the var-
iability in observed genotype frequencies.

Case-control studies.—As in the previous subsection,
we grouped subjects into those with no copies and those
with one or more copies of the a663T allele. On the
basis of the priors described above, this results in an
odds ratio of 0.553. That is, the odds of being AT or
TT are 0.553 times higher in hypertensive individuals
than in normotensive individuals. With N p 1220

and , we calculated ,N p 316 p(p ,p ) p 0.75051 A0 A1

, and , us-E [p(n)Fp ,p ] p 0.7590 p (N ,N ) p 0.6939n A0 A1 0 1

ing the arcsine approximation. It can be seen that we
likely have less power than we expect, which follows
the previous examples.

Discussion

Power calculations for genetic association tests typically
assume fixed allele frequencies and ignore both sampling
variation about and uncertainty in allele frequencies. We
have described methodology and provided examples for
power calculations of candidate polymorphisms that ad-
dress sampling variability and allow for allele frequency
uncertainty. Our results show that ignoring the varia-
bility in sample sizes among the different genotype
groups and the uncertainty in allele frequencies can re-
sult in overestimation of power. Equivalently, it can re-
sult in an underestimate of the sample size needed for a
specific power. The result of overestimating power—and
thus either underrecruiting or having overly optimistic
expectations—is to reduce the success of candidate gene
and fine mapping studies. Ultimately, underpowered
studies are a waste of financial, human, and sample re-
sources. In our examples, the overestimation of power
could be large or small. Given the potential impact of
sample variability and allele frequency uncertainty on
power estimates and the relative ease of addressing this
variability in power calculations, we argue that sample
variability should not be ignored and should be properly
accounted for through use of the methods we have
described.

The level of uncertainty in , as expressed by thepA

prior, plays a large role in the calculation of power. One
possible mechanism to specify the beta prior is to use
available data for the polymorphism of interest from
previous studies. This approach is reasonable, provided
that the sample on which the previous study was based
is from a population that is the same as or comparable
to the sample in the present study. As has been well
documented and is predicted from evolutionary models,
allele frequencies will vary significantly between differ-

ent populations. Thus, considerable care should be
taken when borrowing data from other studies. Unlike
the use of a single point estimate, as is typically used
in genetic power calculations, the use of a distribution
on can soften the blow of misspecification. One pos-pA

sible remedy to counteract concerns of population sub-
structure is to widen the distribution of (i.e., decreasepA

the prior parameters g and d by a multiplicative constant
c). It is clear that the ideal solution would be to obtain
a subsample of genotype data from the current popu-
lation. We believe that it is better to have an average
estimate of power for a study over a distribution of
possible values of than an overestimate of power forpA

a single estimate of . Failure to account for this un-pA

certainty can lead to insufficiently powered studies and,
ultimately, to a lack of success.

Schork (2002) discussed the potential value of aver-
aging over unknown parameters for power calculations;
he does not address the issue of integrating over ge-
notype frequencies. Schork (2002) notes that the selec-
tion of the proper prior distribution may be difficult,
but he does not provide guidance on how to make such
a selection. Although we agree with Schork (2002) as
per the selection of the exact distribution of the allele
frequencies, we believe that often we do have some in-
formation. Appropriately incorporating that informa-
tion greatly improves the quality of our power estimates
compared with arbitrarily fixing allele frequencies and
treating them as if they are known quantities. As dis-
cussed in the present article, fixing allele frequencies
even if they are not known is the common approach to
power calculations. We show that ignoring the sources
of variation in allele frequencies tends to result in over-
estimates of power and, consequently, in studies that
are underpowered. The current work contains a pro-
posal for the selecting a prior distribution. An important
additional advantage of our choice of a beta prior is
that it allows us to switch the order of integration and
summation in calculation of , which greatly re-p (N)
duces the complexity of equation (3). This exchange is
not possible with an empirically derived prior distri-
bution for the allele frequencies, as proposed by Schork
(2002).

There are many obvious extensions of the current
work. When studying a population composed of one or
more subpopulations with differing allele frequencies
(e.g., two different ethnic groups), a prior for each group
might be useful. If we assume that the effect of the allele
on the phenotype was the same for each group and that
there was a group effect, then the statistical model might
then contain a term for group and power could be cal-
culated by integrating over both prior distributions. For
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cohort studies, the calculations would be similar to
those presented here for case-control studies. In this
article, we have used the proposed method for tests that
use the general linear model for quantitative traits, using
Fisher’s exact and x2 tests for qualitative traits and using
x2 tests for case-control studies. The method can be used
for any test, by using the appropriate . We are cur-p (n)
rently working to extend this method to microsatellite
markers, haplotypes, and the TDT. The effect likely will
be larger for microsatellite markers and haplotypes, be-
cause of the greater number of allele variants.
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Appendix

Details of Power Calculations

In this article, we have implemented software for the calculation of power for quantitative traits through use of
the general linear model and for qualitative traits through use of Fisher’s exact test and the arcsine approximation
to the x2 test. The calculation of power for both approaches uses standard methods and is described here for
completeness.

Quantitative Traits

Assume that we have a hypothesized alternative hypothesis where is a vector of length 3, containing the meansm

of the three groups under the alternative. We assume that the within-group variance is and that the tests will2j

be performed at the a level.
Assume that we are given the following parameters: the level of the test (a), the number of subjects with genotypes

AA, AB, and BB the assumed means under the alternative hypothesis , the within-group variance(n p (n ,n ,n )) , (m)1 2 3

(j2), and the model (M). In this article, the model M will be a three-level (2-df) model in which the test is made
using one-way analysis of variance, an additive model in which the test is made using linear regression, or a
dominance-recessive model in which the AA and AB groups are pooled for comparison to the BB group. (Note
that we can switch A and B to compare BB and AB to AA.) Finally, we assume that A and B are in Hardy-Weinberg
proportions.

We use the theory of linear models to calculate power with any combination of the above parameters. Our
approach follows that presented by Searle (1971). Write the model in matrix notation as , where hasY p Xb � e X

rows and columns. For the three-level model when all cell counts are positive ,N p n � n � n k � 1 (n 1 0,Gi)1 2 3 i

. For the linear (additive) and dominance-recessive models, . We assume that contains an interceptk p 2 k p 1 X
and can be rewritten as and that . Let be the means of the columns of′ ′˜ ¯ ¯ ¯X p [1 X ] b p [b ,b] x p [x , … ,x ]1 0 1 k

Letting , we can calculate the noncentrality parameter as Let satisfy′ ′ ′ 2˜ ˜¯X . Z p X � 1x f p bZ Zb/2j F1 1 crit

. Finally, the power is , which may be calculated using built-in functions in S-Pr [F 1 F ] p a Pr [F 1 F ]df ,df crit df ,df ,f crit1 2 1 2

Plus or SAS. Note that, in S-Plus, is defined without the factor of 2 in the denominator.f

Three-Level Model.—When fitting a three-level model, the matrix is given by′Z Z

2 2n � n n2 3 1′{ } ( )Z Z p n � n � n ,1 2 3( ) ( )11 N N

n � n �n �n n � n n n2 3 2 1 1 3 1 2′ ′{ } { }Z Z p Z Z p n � n � n ,1 2 3( ) ( ) ( ) ( ) ( ) ( )12 21 N N N N N N

and

2 2n n � n2 1 3′{ } ( )Z Z p n � n � n .1 3 2( ) ( )22 N N
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The term . If none of the cell sizes are 0, then and . If only one of the′b̃ p (m � m ,m � m ) df p 2 df p N � 31 3 2 3 1 2

cell sizes is 0, then and . If two or more of the cell sizes is 0 or , then the test cannotdf p 1 df p N � 2 N p 21 2

be performed, and the power is 0.
Additive Model.—When fitting an additive model and the alternative hypothesis is specified as , we need tom

estimate the slope as a function of the number of copies of the B allele. We use a weighted regression with data
, , and and weights n1, n2, and n3 and calculate as the slope of these data. With this model,˜(�1,m ) (0,m ) (1,m ) b1 2 3

,k p 1

2 2 2n � 2n n � n 2n � n2 3 1 3 1 2′Z Z p n � n � n1 2 3( ) ( ) ( )N N N

is a scalar, , and . If all subjects are of the same genotype or if , then thedf p 1 df p N � 2 (ai � N p n ) N � 21 2 i

power is 0.
Dominant-Recessive Model.—When fitting a dominant-recessive model, we need to estimate the effect size under

the alternative hypothesis, as was done in the previous section. We use a weighted regression with data ,(0,m )1

, and with weights n1, n2, and n3 and calculate as the slope of these data. The matrix product˜(0,m ) (1,m ) b2 3

2 2n n � n3 1 2′ ( )Z Z p n � n � n1 2 3( ) ( )N N

is a scalar, , and . If all or none of the subjects are homozygous for B or if , then thedf p 1 df p N � 2 N � 21 2

power is 0.

Qualitative Traits

For examination of qualitative traits, we assume either a dominance or a genotype-based model. For the(2 # 3)
former, this is equivalent to assuming that people with AA and AB genotypes are identical, and they are compared
with the people with BB genotypes. For the latter, we compare AA with AB with BB through use of a 2-df test.
Under the alternative hypothesis, we assume that the true phenotype penetrances are andPEN(AA or AB)

or and Testing will be performed at the a level.PEN(BB) PEN(AA), PEN(AB), PEN(BB).
An excellent discussion of power for testing differences in proportions for the two-sample design can be found

in the review article by Sahai and Khurshid (1996). In their article, they compare Fisher’s exact test to the x2 test
(with and without continuity correction). Fisher’s exact test is conservative, but it has the advantage that it does
not rely on approximations. A discussion of power for x2 tests for tables of arbitrary dimension is found in the
article by Lachin (1977).

Fisher’s Exact Test.—The calculation of power for Fisher’s exact test is quite complicated. Details can be found
in Sahai and Khurshid (1996) and the Proc-StatXact manual (Mehta and Patel 1999). Instead of programming the
calculations ourselves, we initially used Proc-StatXact to calculate for each possible . These values were thenp (n) n
read into our C program and used to calculate and using equations (1) and (3). We subsequentlyE [p (n) Fp ] p (N)n A

programmed the calculations ourselves, to have a stand-alone program.
x2 Test with Arcsine Approximation.—The arcsine method is described by Sahai and Khurshid (1996), and power

as a function of n1, n2, , , and a is given in equation (48) of their article. Unfortunately,PEN(AA or AB) PEN(BB)
their formula is for a one-sided test, even though it is described as being for a two-sided test. However, a modification
of the formula they present in their table II can be used to calculate the correct power. Specifically, let ,k p n /n2 1

4n k1� � �C p arcsin PEN(AA or AB) � arcsin PEN(BB) ,1 F Fk � 1

and , where is the standard normal distribution function. The power is then�1C p F (1 � a/2) F(x) F(C �2 1

.C ) � F(�C � C )2 1 2

x2 Test for an Table.—Power for a general table is described by Lachin (1977). Let there be r treatmentr # c r # c
groups (indicated by the rows) and c classes (indicated by the columns). Let N be the total sample size and theNi

group sizes. Define by . Let denote the probability of being in column j conditional on being in1Q N p NQ ri i i ij

row i under the assumed alternative hypothesis. Let and . Define the noncentrality parameter1 1a p S r Q d p r � aj i ij i ij ij j

as and . Let satisfy . Finally, the power is2 2l p NS [(1/a ) S (Q d )] df p (r � 1) # (c � 1) C Pr [x 1 C ] p aj j i i ij crit df crit

.2Pr [x 1 C ]df,l crit
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Electronic-Database Information

The URLs for data presented herein are as follows:

Authors’ Web site, http://www.ambrosius.net/Power/ (for soft-
ware in C)

Comprehensive R Archive Network, University of Cali-
fornia, Los Angeles, http://cran.stat.ucla.edu/src/contrib/
PACKAGES.html#combinat (for Combinat: combinatorics
utilities version 0.0-2 [a package for R and S-Plus])

Department of Biomathematics and Biostatistics Free Code
Archive, M.D. Anderson Cancer Center, http://odin.mdacc
.tmc.edu/anonftp/ (for DCDFLIB: library of C routines for
cumulative distribution functions, inverses, and other pa-
rameters, release 1.1)
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